
Kinetically reduced local Navier-Stokes equations: An alternative approach to hydrodynamics

Iliya V. Karlin*
Institute of Energy Technology, ETH, 8092 Zurich, Switzerland

Ananias G. Tomboulides†

Department of Engineering and Management of Energy Resources, University of Western Macedonia, 50100 Kozani, Greece
and Aristotle University of Thessaloniki, Greece

Christos E. Frouzakis‡

Institute of Energy Technology, ETH, 8092 Zurich, Switzerland

Santosh Ansumali§

School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore
�Received 12 May 2006; published 29 September 2006�

An alternative approach, the kinetically reduced local Navier-Stokes �KRLNS� equations for the grand
potential and the momentum, is proposed for the simulation of low Mach number flows. The Taylor-Green
vortex flow is considered in the KRLNS framework, and compared to the results of the direct numerical
simulation of the incompressible Navier-Stokes equations. The excellent agreement between the KRLNS
equations and the incompressible nonlocal Navier-Stokes equations for this nontrivial time-dependent flow
indicates that the former is a viable alternative for computational fluid dynamics at low Mach numbers.
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The notion of incompressible flow usually refers to a situ-
ation where a characteristic flow speed u is small compared
to the speed of sound cs, and the Mach number Ma=u /cs is
small. Then, the simplest characterization of the degree of
“molecularity” is the Knudsen number Kn�� /H, the ratio
of the mean free path of molecules �, and the characteristic
scale H of variation of hydrodynamic fields �density, mo-
mentum, and energy�. When Kn�10−3, one considers the
hydrodynamic limit, where molecularity reduces to a specific
set of transport coefficients �viscosity, thermal conductivity,
etc.� for each molecular model. If, in addition, the Mach
number is small, one enjoys incompressible hydrodynamics
with the ordering Kn�Ma�1, and the flow can be charac-
terized solely by the ratio

Re =
Ma

Kn
, �1�

which is one of the definitions of the Reynolds number.
Computational fluid dynamics �CFD� of flows at small

Mach number has been traditionally based on the mechanical
description of the incompressible fluid, the classical incom-
pressible Navier-Stokes �INS� equations,

�tu� + u���u� + ��P =
1

Re
����u�, ��u� = 0, �2�

where u is the fluid velocity, P the pressure, and Re the
Reynolds number, which characterizes the relative strength
of the viscous and inertial forces �1�. The pressure in �2� is

not an independent thermodynamic variable, and must be
determined so that it satisfies the incompressibility condition.
Thus, in order to obtain the pressure at a point, one has to
solve the Poisson equation

����P = − ���u�����u�� �3�

in the domain, and the relationship between the pressure and
the velocity becomes highly nonlocal. The physical meaning
of �3� is that in a system with infinitely fast sound propaga-
tion, any pressure �and thus density� disturbance induced by
the flow is instantaneously propagated into the whole do-
main.

This “elliptic problem” is arguably the most severe ob-
stacle for developing numerical methods for CFD. Therefore,
in the recent past, alternative physical models of incompress-
ibility have been explored based on a more local �thermody-
namic� picture. To date, the most successful approach is the
lattice Boltzmann method �LBM� �2�. The LBM models are
derived from the Boltzmann equation under the assumption
of a low Mach number �3,4�, and provide a viable alternative
for CFD methods for practical applications �5�. However,
certain features pertinent to the LBM �the relatively large
number of fields and the restriction to uniform grids� impose
limitations that so far persist in spite of numerous attempts.

Recently, an alternative thermodynamic description of in-
compressible fluid flows was introduced in �6�. It was found
that the grand potential in the Euler coordinate system is the
proper thermodynamic variable to study the onset of incom-
pressibility. The starting point in �6� was the set of compress-
ible �local� Navier-Stokes equations for the density �, the
momentum density m=�u, and the negative of the grand
potential G,
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G = P −
m2

2�
. �4�

Here, P is the �local� thermodynamic pressure measured in a
comoving �Lagrange� coordinate system. It was shown that,
after the acoustic �density� mode is damped out on the short
time and length scales,

ta � �KnMaT, la � �KnL , �5�

respectively, where L is a characteristic flow length scale,
and T is the flow time scale, one arrives at a coupled system
of equations for the nondimensional momentum density j
=m / ��U0�, where �U0 is a characteristic momentum �known
from the initial or boundary conditions�, and the nondimen-
sional grand potential density �=G / ��U0

2�. In these kineti-
cally reduced local Navier-Stokes �KRLNS� equations, the
fast dynamics of the grand potential becomes singularly
coupled to the slow dynamics of momentum, and the incom-
pressible Navier-Stokes equations are the quasistationary so-
lution of the KRLNS equations at small Mach number.

In this paper, we demonstrate that the KRLNS equations
�6� are capable of providing an alternative, local-in-space
framework for computational fluid dynamics. We report an
extensive simulation of the classical three-dimensional
Taylor-Green vortex flow �7� both in the KRLNS equation
framework, and in the classical incompressible Navier-
Stokes setting using the spectral element method �8�. Excel-
lent agreement between the two approaches is observed.
Moreover, the quasicompressible nature of the KRLNS equa-
tions is quantified in this flow as nonrandom oscillations of
the divergence of the velocity field on the Mach number
scale. Implications of this quasicompressibility as well as
possible ways to increase the simulation time step are also
discussed as areas in which further work is needed.

We consider a simplified version of the KRLNS equations
that contain the terms required to reconstruct the incompress-
ible Navier-Stokes equations as the quasistationary approxi-
mation. The simplification is achieved following two steps.

�1� The equation for the dimensionless grand potential
density � �Eq. �10� in Ref. �6�� is a diffusion equation with
a source term that depends solely on the dimensionless mo-
mentum j,

�t� − �Kn
�

Pr
����� = −

1

Ma
��j� + F�j� , �6�

where � is the adiabatic exponent, Pr is the Prandtl number,
and F is the nonlinear part of the source term,

F = Ma��� j�j2

2
� + �Kn	� �

Pr
− 1�����

j2

2
+ ���j�����j��

+ 
 �P

�T



�

1

2CV
���j� + ��j�����j� + ��j��

− �1 + � −
2

D
����j���j��� . �7�

In the following, we neglect the nonlinear term F, and retain
only the leading order source term, Ma−1��j�, Ma�1, re-

sponsible for maintaining incompressibility. As was ex-
plained in Ref. �6�, the use of the grand potential is crucial
in the KRLNS equations since any other choice of the
thermodynamic function �e.g., of the entropy S� would
immediately result in the presence of an advection term
j���S, and in nontrivial coupling to the momentum equa-
tion. Finally, although not necessarily, we shall also set
Pr=�.

�2� The momentum equation �Eq. �10� in Ref. �6�� reads

�t j� = − Maj���j� − Maj���j� − Ma���� +
j2

2
�

+ �Kn�1 + � −
2

D
�����j� + �Kn����j�, �8�

where � is the ratio of bulk viscosity to shear viscosity. In �8�
we shall neglect the bulk viscosity term, which is propor-
tional to the divergence, ��Kn����j�, as compared to the
first term in the right-hand side, −Maj���j�. This is con-
sistent with the assumption Kn�Ma under which the
KRLNS equations were derived. Eventually, both these
terms could be neglected because we expect �this has been
confirmed by the simulations below� that the divergence
itself is of the order Ma. However, we shall retain the first
term in the right-hand side of �8� in order to achieve a
conservation law form of the momentum equation, which
is more convenient from the numerical perspective. The
same approach is routinely applied in the numerical simu-
lation of low-Mach-number hydrodynamics �8�.
With these simplifications, the KRLNS equations are written
as

�t j� = − Ma��	 j�j� + 	���� +
j2

2
�� + �Kn����j�,

�t� = −
1

Ma
��j� + �Kn����� . �9�

The KRLNS equations �9� are valid for Kn�Ma�1, on
scales larger than the acoustic �5�. They can be considered as
a simplified computational model of the complete equations,
derived in �6�. Note that these simplifications retain the basic
physical properties of the equations approaching incompress-
ibility. Loosely speaking, �9� is what survives from the com-
pressible Navier-Stokes equations just before incompressibil-
ity sets in. Indeed, the time derivative of � becomes
singularly perturbed as the Mach number tends to zero, and
we recover the incompressibility condition ��j�=0 as the
quasistationary solution of the system �9�. This solution,
when substituted in the momentum equation, recovers the
INS equation �2� with the usual accuracy of O�Ma2�. The
dissipation terms �proportional to �Kn� cannot be neglected
in the equation for the grand potential �9�. We hasten to add
that this is at crucial variance with the artificial compressibil-
ity method �9�, where one considers an artificial singularly
perturbed dynamic equation for the pressure.

Now, the KRLNS equations �9� are a parametric family of
hydrodynamic systems �parametrized by the values of Ma
and Kn�, which we study numerically and compare with the
solution of the incompressible Navier-Stokes equations �2�.
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Both the INS and the KRLNS equations were discretized
using the spectral element method �8�. The temporal discreti-
zation is based on a second-order mixed explicit-implicit op-
erator splitting formulation �10,11�. The message passing in-
terface �MPI� based parallel code runs with good scalability
on a number of different platforms �12�.

The KRLNS equations �9� are first transformed into a new
set of variables ��=Ma� and u�= j� /�, with � being con-
stant. In order to compare the results from the INS and the
KRLNS equations, the time scale �tNS� in the incompressible
Navier-Stokes equations �2� is related to the time scale of the
KRLNS equations �tKRLNS� as follows:

tKRLNS = Ma tNS. �10�

On the other hand, the Reynolds number Re in the Navier-
Stokes equations �2� is related to the parameters Ma and Kn
in the KRLNS equations �9� according to Eq. �1�.

We consider the classical three-dimensional Taylor-Green
vortex flow, and compare the results from the numerical so-
lution of the rescaled KRLNS equations with the results from
the direct numerical simulation of the incompressible
Navier-Stokes equations �2�. This flow has the property that,
at large Re, the enstropy shows a rapid increase due to vortex
stretching followed by a monotonic decay due to dissipation;
on the other hand, the total energy of the flow decreases
monotonically for all Re. Various discretizations were em-
ployed, with a total of 512 spectral elements and number of
collocation points ranging from seven to 15 in each direction
in the interior of each element. In rescaled time �10�, the
restriction on the time step was the same in the two methods;
this means that the time step used in the solution of the
KRLNS equations was always Ma times smaller than the
INS one, i.e., 	tKRLNS=Ma 	tNS. No other parameter match-
ing between the KRLNS and INS equations was involved.

Snapshots of the isosurfaces of the vorticity component,

x=�yw−�zv=−5, where v and w are the velocities in the y
and z directions, respectively, for the KRLNS equations at
the time of maximum enstrophy for Re=1000 are presented
in Fig. 1. The general structure of the flow as well as all
pertinent details agree very well in the two approaches at all
computed Reynolds number, and only the KRLNS results are
shown.

Figure 2 shows the time development of the total enstro-
phy �=�
2dx for both approaches at various Reynolds
numbers. It can be observed that the maximum value of the
total enstrophy as well as the nondimensional time where it
occurs increase with Re. As can be observed from the figure,
the resulting time variation of the enstrophy for both the INS
and the KRLNS equations agree very well with each other.

It is important to note that the KRLNS equations are qua-
sicompressible, that is, the incompressibility condition ��j�

=0 is valid only in the limit Ma→0. The dynamics of the
divergence, ��j�, show a rapidly fluctuating pattern with a
characteristic frequency �Ma−1 around the specified value of
Ma �see Fig. 3, where Ma=0.01 and the divergence fluctu-
ates at the 10−2 level�; the expanded inset clearly shows the
nonrandom high-frequency fluctuations of the divergence.

The dependence of the amplitude and the variance of
these fluctuations on the Mach number is presented in Fig. 4.

It is quite remarkable that both the average value as well as
the variance of the divergence scale linearly with Mach num-
ber. While in most of the simulations presented here we have
used Ma=10−2, it was found that results for the energy and
enstrophy �the quantities of primary interest in incompress-
ible flow simulations� agree with the incompressible Navier-
Stokes simulation up to Ma�0.1, the value typically used in
lattice Boltzmann simulations.

To conclude, we have shown that the KRLNS equations
�9� provide an alternative physical description of incom-

FIG. 1. �Color online� Isosurfaces of 
x=−5 at the time of
maximum enstrophy in the Taylor-Green flow simulation at Re
=1000 computed with the KRLNS equations.

FIG. 2. Time history of total enstrophy for Re=100, 500, and
1000. Symbol: KRLNS equations. Line: INS equations. Time is
measured in the Navier-Stokes units.
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pressible flows. The attractive feature of these equations is
their locality, i.e., no elliptic pressure equation needs to be
solved. The KRLNS equations should be considered there-
fore as an analog of the lattice Boltzmann models of incom-
pressible flows. Unlike the latter, the number of fields in
KRLNS equations is only four, and the equations are ame-
nable to standard discretization procedures. On the other
hand, the locality in any physical model of incompressible
flows has to be traded against the significant decrease of the
time step as compared to Navier-Stokes solvers �see Eq.
�10��. For example, using a Ma=0.1 will result in a reduction
of the time step for the KRLNS equations of ten times com-
pared to the time step which can be used for the solution of
the INS. Due to the locality of the KRLNS solver, however,
one avoids the solution of a pressure Poisson equation which
can carry a significant computational cost.

It is worth mentioning here that no attempt was made to
optimize the time step, which was taken simply as in �10�
�i.e., Mach number times smaller that of the INS solver�. It is
expected that precisely the scaling of order Ma, shown in
Fig. 4, which includes the time scale of variation of the di-
vergence, can be exploited by appropriate numerical schemes
�e.g., projective integration �13��, which will allow a signifi-
cant increase of the time step in the solution of the KRLNS
equations. This means that, even though the explicit time

step is more severely restricted, at low Mach numbers, it is
likely that due to more pronounced scale separation, more
substantial computational savings can be achieved at lower
Ma.

On the other hand, the smoothing effect of the dissipation
term in the equation for the grand potential is crucial: its
neglect leads to unstable schemes, which may require the use
of time steps much smaller than �10�. This particular term,
which is derived by rigorous asymptotic analysis of the com-
pressible Navier-Stokes equations �6�, is the main difference
of the physical model �9� from artificial compressibility
models.

Our further studies will be focused on devising ways to
filter out the rapid fluctuations in order to increase the time
step. We are also investigating the proper treatment of
boundary conditions for the KRLNS equations in the pres-
ence of walls as well as inflow-outflow boundaries.
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FIG. 4. Dependence of the mean �filled circles� and of the root
mean square �open squares� of the fluctuations of the divergence on
the value of the Mach number in Taylor-Green vortex flow as pre-
dicted by the KRLNS equations. Lines are to guide the eye.

FIG. 3. Time history of the divergence ��j� at Ma=0.01, Kn
=10−5 �Re=1000�.
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